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Abstract-For insight into the dynamic interaction between growing cracks and dislocations during
fracture. the dislocation forces and the crack driving foree due to the dislocations themselves are
calculated for a Mode III crack initially in equilibrium with a stationary array of screw dislocations.
The calculations are based on the exact closed-form solution for a single. arbitrarily-placed, screw
dislllCation and a crack growing at a largely arbitrary speed. They show that. in the absence of an
applied stress in the material. the dislocation has no tendency to follow the crack edge as it moves
but is. instead. attracted to the crack surfal."e. If the dislocation is a member of an array. however.
it can either be attracted to or repulsed by the crack surface. and could very well follow the crack
edge by jogging. More generally. both the dislllC;llion and crack driving forces exhibit dynamic
elTl.'Ct~ embodied in the crack edge speed. and underl.lo rapid changes at fracture initiation. \,"Specially
if the crack in~tanlanel'usly allains a finile spl.'Cd.

I. INTRODUCTION

Rice and Thomson (1974), U (1981) <lOll Ohr (1985) have studied the role of dislocation
emission from cr:lck edges in the prediction :lnd characterization of fracture, while M<ljum­
d<lr and Burns (19lH) :tnd Thomson :tnd Sinclair (1982) h<lve studied the disloc:ttion­
induced shielding of cr~tck edges from applied stresses. These studies demonstrate the
import.mce of crack-dislocation inter.lction in fracture mechanics.

The studies arc based, however, on 4uasi-static analyses. so that detailed information
on the order of fracture events :lOd their nltes of occurrence is often not possible. Moreover.
the studies may not accurately describe fracture under dynamic loading, with its associated
wave propagation etfects (Achenbach, 1973). To extend these studies, therefore, to dynamic
situations. the screw dislocation motion near a crack which begins to grow in Mode HI
upon the diffraction ofa plane SH-wave was analyzed (Brock and Jolles, 1987). The analysis
was based on Hpproximations of formally exact transient solutions, and presumed that the
dislocations migrate toward the moving crack edge.

This presumption gave results which seemed to agree qualitatively with aspects of
damage zone geometry observed near crack edges. It was based on a result of quasi-static
generalized force analysis, e.g. Rice and Thomson (1974), that a dislocation in the absence
of applied stresses and other boundaries will be attracted to a crack surface. Moreover, it
rdied on the observation (Hirth and Lothe, 1982) that dislocations may well undergo
jogging from one glide plane to another during motion.

However. the analysis in Brock and Jolles (1987) did not determine what the actual
generalized forces were during the crack growth process. The purpose of this article is,
therefore. to move an important step beyond that analysis and examine the transient
generalized forces due to the interaction between a growing crack and a stationary screw
dislocation array. Both dislocation forces and the crack driving force J arc considered and.
moreover, the analysis will be exact. Thc first stcp in the analysis is taken in the ncxt section,
where a general problem is stated, and its formal solution given.

2. GENERAL PROBLEM AND ITS FORMAL SOLUTION

Figure I shows a semi-infinite crack defined in the _\"-y plane as y = 0, x < O. For
s < 0, where s = (rotational wave speed) x (time). the crack is at rest near a right-handed
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Fig. t. Geometry for a single dislocation.

screw dislocation of Burgers vector magnitude b. The polar coordinates (r.9) of the
dislocation are (d> O. 0 ~ '" < Tt/2). and the glide plane extends into the crack edge. For
s > O. the crack grows in Mode III along the x-axis. so that its edge is located at y = O.
x = C(s). Here C is continuous and single-valued. C(O) = O. 0 ~ t < 1, s ~ 0 and ()
denotes s-differentiation. The inequalities preclude crack edge retreat and supersonic speeds.

The process can be viewed as the superposition ofcrack-dislocation and applied stress­
crack interaction processes. Our interest is chiefly in the former. and so we restrict attention
to the governing equations for it: when s > 0

b
V 2w+ -J'(N)II( -S)Il(S+d)-I~'= O.

Jl

for all x except y = O. x < C. where

Sy = O.

w(x. 0') = wo(x) (Ia.b)

(2)

In eqns (I) w(x,s) and wo(x) are the antiplane displacements for s > 0 and s < O. respec­
tively, and x = (x,y) is the position vector of points in the plane, while

ow
s.. = Jl~,ux

(3)

are the only non-zero tractions. The coordinates (S, N) are aligned with the dislocation
glide plane. as indicated in Fig. I. The parameter Jl is the shear modulus, VI the Laplacian
operator, and the non-homogeneous term in eqn (Ia) is the Burridge-Knopoff (1964)
equivalent body-force representation for the screw dislocation. The symbols fJ and 11 denote
the Dirac and Heaviside functions. and ( )' signifies differentiation with respect to the
argument.

By superposition, the solution of eqns (I )-(3) can be written as

w = W o+ W

where ""0 is as defined above. and W for s > 0 satisfies the conditions

(4)

(5)

for all x except y = 0,0 < x < C, where

(6)

The previously-introduced function W o is, of course, the equilibrium solution existing for
s < 0, and has been obtained by Majumdar and Burns (1981) as
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21t . _ [ I (.J=+.JD)
b K-

o
- m n .J=-J15 ' (7)

by using confonnal mapping techniques. Here C) denotes the complex conjugate. The
function W, then, must be the displacement arising from the removal of the wo-induced
traction by the growing crack. Standard Green's function (Carrier and Pearson, 1976)
methods give for ±Y < 0 the fonnal solution of eqns (5)

(8)

where the variables (p, O. q) correspond to (x, y. s). The integration area is that portion of
the p-q plane where both the argument of the radical is positive and Sy along y = 0 does
not vanish. By following Achenbach (1970), it can be shown that Sv along y = 0 is given
by eqn (6) when 0 < x < C. by the relation

_ 1. it;. .J(K-l') (v-e v+~)
S,_ - / dl Svo J 'o. J. 1t,,(,,-A.) ~ ,,-v' 2 2

when C < x < s, and vanishes otherwise. Here ('.,,) arc the characteristic variables

and" = K(,) defines the ,-" plane trajectory of the crack edge, Le.

(9)

( 10)

(\I )

The contour" = edefines the original crack edge position x = O.
While an exact solution, the formal assembly implied by eqn (4) is inconvenient both

for purposes of studying solution behavior, and for obtaining the results intended here. The
analysis of Brock and Jolles (1987) encountered a similar situation, and derived more
explicit results valid for rld« I, i.e. in the neighborhood of the initial crack edge location.
By following the transient analysis for a concentrated force near a stationary crack (Brock,
1986), the procedures used by Brock and Jolles (1987) can, in fact, be applied here to yield
more explicit results which are, simultaneously, exact. This application begins in the next
section with the expression for S,.

3. SIMPLIFICATION OF s,

Differentiation of eqn (7) gives

21t J(d) (:c-d) cos !t/I-A - -JIb 0 - :c (:c-d cos t/I)z +dz sin 2
'"

(12)

for y = O,:c > O. Substitution ofeqn (12) into eqn (9) in light ofeqn (10) and the integration
variable change .J2v = s-x-2u then yields the integral
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2n I I I In (U+d) J(u+c l ) I_os ==-d cos -I/! du -- ---
J-tb' n,,/(x-Cd V 2 -c, u+x -u (u+dcos 1/!)1+d1 sin1 1/1

( 13)

where C I satisfies the implicit relations

SI-CI = s-x. (14)

The integration in eqn (13) lies along the branch cut - C I < U < 0 of the integrand. which
itself exhibits simple poles at u = -x < 0 and u = -de±il"'l and vanishes as O(u- 1

) when
Iu I -+X). Cauchy residue theory can, therefore, be employed. and it is easily shown that
eqn (13) can be rewritten as

S •. = -Ao+A.
2n _ J(_d_I_) x cos ~I/!I -c/ cos Ol/ll-I/!)

A - , , 2
J-tb x-C l (x-dcos rJ!)'+d- sin rJ!

(15)

for y = O. C, < x < s. where (d l • 1/1 I) defined as

D- C 1 = d, e''''' ( 16)

are the polar coordinates of thc dislocation with respect to the craek edge position y = O.
x = Cr. It is notcd that (dl.l/!l) = (d. I/! ).•lIld thus A = An. when C I == O. i.e. of l = O. With
ellns (15) in hand. the formal integration (8) can now bc carried out.

4. SIMPLIFICATIONS OF W

In view of their ranges of definition, it is readily shown that the regions of integration
in the PCf plane arising from the substitution of ellns (6). (12) and (15) into eqn (8) have
the general form indicatt:d in Fig. 2. Thcre it is notcd that. in tcrms of the more convenient
integration variables

J2u = Cf-P. J2v = Cf+P ( 17)

corresponding to (~, '/). the regions can be located in terms of the contours v = u. v = K(u)
and v = M (u). The first two were defined ~arlier in terms of (e. t/) ; the third contour locates
the upper boundary of the area in which the argument of the radical in eqn (8) is positive.
I.e.

y1
J2M = s+x- •

s-x-J2u
IYI:;': O. (18)

Upon making variable changes (17), it can be shown in view of Fig. 2 that

q (x,s) v=K(u)

u

p

Fig. 2. Schematic of integration regions for W.



Transient generalized forces due to dislocation array-growing crack interaction 397

±.j21!.. W = r·· du rM
A dv r·o

du rM
Aodt, (19)

p Jo .j(~-u) JK .j(M-v) Jo .j(~-u) J. J(M-t·)

for ±y < 0, where u = Uo defines the intersection of the contours v = u and M, and is given
by

Uo =s-r (20)

while u = u· defines the intersection of the contours v = K and M, and therefore satisfies
the implicit relations

(2Ia)

where (r·, 0·) defined by

(2Ib)

are the polar coordinates of x with respect to the crack edge location y = 0, x = C·. It is
easily shown that 1I0;?; II·. Employing eqns (15) and (17) to write the first v-integration in
eqn (19) more explicitly gives

b Jell r\f dv (II-II) cos ~"'I-J2e1cos0"'1-"')
; 21

;-1 J,; J(!vI-v).j(v-A.') (v-II-J2c1cos ",)2+2c1i~sinz '" (22)

where it is noted that (ell' '" I) are independent of v. This integration is ulong the brunch cut
K < v < !vi of the integrand. which itself exhibits simple poles ut v = 11+ .j2c1 etal"'l and
behaves as O(v- 2) as Ivl- 00. Cauchy residue theory cun then again be used with the result
that eqn (22) becomes

(23)

Interestingly enough. the second v-integration in eqn (19) gives an identical result. so that
eqn (19) reduces to

(24)

which can be integrated to yield, cf. eqns (7),

s;?; r (25)

where

(26)

and (d·. "'.) defined by

(27)

are the polar coordinates of the dislocation with respect to the crack edge location y = 0,
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x = C*. With eqns (7) and (25) in hand. the general problem solution can now be used to
study generalized forces. Dislocation forces are considered in the next section.

5. DISLOCATION FORCES

By means of the Peach-Koehler idea (Weertman and Weertman. 1964). the force per
unit length acting on any segment of the dislocation can be obtained directly from the
traction components. If one is interested in the antiplane traction acting on a plane the
normal of which is in the n-direction. then the derivative of II" with respect to n is required,
and from eqns (7) and (25) it can be shown that

4n: CWo e" (I I)
b~ = Re J= J=-JD - J=+J{)

4n: (1W e'" I [J(D)( C ).J( r) I J*b?n=Re(l_CcosO)*'=-D = 1-2(I+e'~) +iC D sin 20

I [J {) (C ~). ' Jr . I J* e" ( JD J{))+ --- - 1- -(I +e') +IC-_ SIO -() -Re- -- + --- ,
=-D J= 2 JD 2 J= =-D =-D

(28a)

s ~ r

(28b)

where. as seen in Fig. I. v is the angle between the n- and y-directions. We also note that
=- D = =* - D*. and that C is the crack speed nondimensionalized with respect to the
rotational wave speed. Three force components arc of particular interest. the component
along the glide plane./s. and those in the coordinate direction./x andf., These components
can be obtained from eqns (28a) and (28b) by setting v = '" forf~. v = 0 forIx and v = -n/2
for1;,. and then letting z approach D along normals to the particular component direction
(Dundurs. 1968). The Peach-Koehler idea thereby yields

In:.o I In:.o I 2 I
-,is = - - Ilb2J.. = - 2e'cos 2-""JIb" 2e/' r

2n: 0 I I ( , I )
/lb21;, = - 4d tan '2'" I +2 COS" 2'"

(29a4:)

while for s ~ cJ. i.e. after the arrival of the crack edge motion signal.

2n: ( I I . *) * .2 I *
Jlh! Fs = cJ* - dCOS '" B cos 2'" .

I I-C·
B* - --

- 2 I - C* cos '" *
(30a)

2n: I , I B* , I
/lb~F. = 2cJcOS" 2"'+ cJ* COS" 2"'*

In: I, I B* ( I), I
-,F = -- COS" -"'cot "'+ - cot "'*-tan -'" cos' -"'*
/lb"' 2cJ 2 d* 2 2

where s* is now defined by the implicit relation

s* = s-d*.

(30b)

(30c)

(31 )

The explicit dependence of B* on C* shows that the transient analysis of dislocation forces
docs reveal dynamic effects. Indeed. the behaviour of B* is clearly rather sensitive to values
of C*. Equations (29) and (30) also show that. in view of eqn (27). the dislocation
force components are generally inversely proportional to the initial crack edge-dislocation
separation. d.
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Fig. 3. Dislocation force for individual dislocations.

In Fig. I the resultant dislocation force I is shown schematically at an angle to the
glide plane; this situation is. in fact. generally true. as can be confirmed by comparing/s
from eqns (29) to (31) with the resultant force magnitude

1/1= J(f.2+/;). (32)

To illustrate the behavior of /. its magnitude and orientation for individual dislocations
with dilTerent values of r/J at various inst..tnts s ..ue shown to scale in Fig. 3. where Cis given
the constant value 0.1. The points marked on the x-axis there indicate where the cr:.lck edge
is at a given .v. In Fig. 3. it is seen that/is always directed to points behind the crack edge
and for sid» I. becomes perpendicular to the crack surface. That is, the dislocations never
have any tendency to move with the crack edge. and they are eventually attracted directly
to the crack surface. In terms of the component Is. Fig. 3 shows that dislocations existing
behind the crack edge (I r/J I > n/2) increase their tendency to move on the glide plane. while
those ahead (I'" I < n/2) see this tendency decrease.

It should also be noted that the arrival of the crack edge motion signal at s =d causes
jumps in both the magnitude and direction of f However. eqns (30) show that these
discontinuities disappear if the crack edge is allowed to accelerate from zero speed. i.e.
C(O) = o.

6. CRACK DRIVING FORCE J

Rice (1968) has shown that for a Mode III crack. the generalized force J is given by

2,.u = Ki (33)

where K) is the stress intensity factor. From eqns (28a), (28b) and (3) we find for all s ~ 0
that

27t oWo I I I
_.- ~ - -- cos -r/J cos -O(r ~ 0)
h vy J (rei) 2 2

27t 0W 27t oWo
- --- ~ - - - (r ~ 0)
h iJy h cy

27t aW C* - I I .1. * I }* C*- - ~ ~ cos;; Y' cos.., t (r ~ ).
h oy J (rd)*(1 - L cos 0)* L. -

From these results it follows that

(34a)

(34b)

(34c)
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/.l I I J(I-C)* I-b KJ = - / ~ cos-;;t/I(s=O-). - -:;--d cos;:;t/I*(s~O).
V (_ltd) - _It_

(35)

Equation (35) indicates that. like the dislocation forces with their explicit dependence on
t. J exhibits a dynamic effect. Indeed. it is a continuous function of s only when (; is
continuous. Like the dislocation force. moreover. J is also generally inversely proportional
to d.

With these observations and results available. we now consider the generalized forces
associated with arrays of dislocations near the growing crack.

7. DISLOCATION ARRAYS-BASIC RESULTS

Consider in Fig. 4 the pair of right-handed screw dislocations which are located
symmetrically about the crack plane at (r.O) = (d. ± t/I). From our previous results. it is
easily shown that for this pair

2n oWo = Re~ (JD + JD_)
b en J: :-D :-D

while for of ~ r

2rr ()W 2rr (711"n e" I [J(D)( ( ")- .... = - - . .~ + Re . 0- I '....• I - _. (I +e' )
h ('" h iJ" (I - C cos ())* : - D : 2

(36a)

From these expressions, the dislocation force components for the dislocation at (d, t/I) are
found to be

2n:.n I
Jlb 2 is = - 2d'

and for s ~ d

2n'n I , I-, i x = - - cos· - t/I,
Jlb- d 2

2n () I .
-b,h = 2-,(cot t/I-sln t/I) (37a-c)
Jl - ,

2n: () I [(C*) * sin (t/I-t/l.)
/.lb 2 (Fs+!s)=2t/.(I-Ccost/l). 2- 1 cos (t/I-t/I )+ sint/l.

+c·G cos t/I*- ~:) ] (38a)

/1/
\\\

y

~.
----x

Fig. 4. Geometry for two symmetrically-arranged pairs of dislocations.
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21t I [(C), I CJ.
JJh1 (Fx+J:) =: d*(l-C cos tIt). 2" -I COS'],t/t +"2

2n: 1 [(t) . 1 I J*
IJb 1 (F.+/i) =: 2d.(I-C cos tIt). 2 -1 S10 2t/t+ sin t/t (cos t/t-C) .

401

(38b)

(38c)

Referring again to Fig. 4. we now consider the force components on this same dislocation
due to another pair of right-handed screw dislocations placed symmetrically about the
crack plane at (r.8) = (d. ±tb). Upon setting z = dei- and D = dei

• in eqn (36). we find
that for this pair eqns (37) are replaced by

2n:.L.,,n = Go(t/t)::::: o.
IW'

while for s ~ d. eqns (38) become

21t II
-b' I. =: Go(O).It •

2n: /,0 I.,)Jtb1' ::::: -Go( - 1ti- (39a-e)

2
b
1t, (£,o; +it) ::::: G _(t/t. t/t)- G_ (t/t. tb )+G+ (t/t. t/t)- G + (t/t. - f/J)

Il •

21t 0-b,(F.+I.)::::: G_(o.t/t)-G.(O.(p)+G~(o.t/t)-G~(O, -eM
II •

where

cos (v+ ~(I/1-Jt/t»-cos (v- Hep+t/t»UGu(v) == ._---_._~.---_._- ------
I-cos (ep-v)

+ :os (v-Htb+3t/t»-cos (v+Htb-t/t»
I-cos (1/1+t/t)

(40a)

(40b)

(40c)

(41)

2d(l-cos (tb±t/t»(I-C cos t/t)·0.t (v,fJ) == J(~r (1- ~.) cos (v-fJ+ ~ (tb±t/t)·)

-~. J(~r cos (v-1J+ ~(tb=Ft/t)·) - J(tY C· sin ~t/t. sin (v-P± ~tb·) (42)

and (Il·, tb·) defined by

(43)

arc the polar coordinates of d ei
• with respt.-ct to the crack edge location y == O•.~ ::::: C·.

A glance at eqn (39a) and comparison of eqn (37a) with (29a) shows that. in equilib­
rium. the glide plane force Is on a dislocation is unaffected by the presence of other
dislocations. Equations (40) and (42) demonstrate that. once crack edge motion is detected.
however. all dislocation force components depend on the other dislocations.

In regard to J. it is clear from symmetry arguments that obtaining the asymptotic
expressions corresponding to eqns (34) for eqns (36) and (37) would give for the dislocation
pair at (d. ± t/t)
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J( 2)* . I- rrd v'(I-C*)cos2"'*(s~0). (44)

8. CALCULATIONS FOR A UNIFOR~1 ARRAY

We now generalize Fig. 4 to define an array of dislocations comprised of seven pairs
of symmetrically-arranged right-handed screw dislocations. The pairs are located at
identical distances d from the initial crack edge position. with polar angles'" = ±krr/8
(k = 1. ... ,7). The total dislocation force components on anyone dislocation in the
array can, of course. be computed by adding eqns (37) and (38) for that particular'" to
the summation with respect to ¢J of eqns (39) and (40) over all other values of'" > 0 in
the array. [n Fig. 5. the magnitude and direction of the total resultant force on five of
the dislocations in the array are shown to a scale for t = 0.2 and various values of s.

Figure 5 indicates that, in equilibrium. the individual members of the dislocation array
are repulsed from the crack plane, unless they lie near I'" I = rr/2' i.e. the perpendicular
through the crack edge. This state is altered greatly. however. by the arrival of the crack
edge motion signals: the total resultant force magnitude decreases by nearly one order in
some cases. and the force itself becomes less repulsive-or even attractive-with respect to
the crack plane. As crack growth proceeds. the total force magnitude tends to increase
again. and those dislocations lying initially behind the crack edge are again repulsed by the
crack surface.

Comparison of Figs 3 and 5 indicates that dislocations in this am1Y arc more sensitive
to crack edge motion. and that. 'lS presumed hy Brock and Jolles (1987). dislocations could
very well migrate toward the moving crack edge hy jogging. if appropriate glide planes were
availahle. It should be noted. however. that the inst'lOtaneous variations in the total
resultant force with the cmck edge motion signal arrival stems from the discontinuous
nature of C. as noted earlier for single dislocation resultant forces.

Turning now to crack driving force. K ,. for the symmetric array would simply be a
summation of eqn (44) over the values'" > O. To illustrate its behavior. we plot this slim
vs s ~ 0 for various values of constant C in Fig. 6. There it is seen that KJ, and thus. J.
decreases in magnitude as both .I' and C increase. This behavior implies that crack edge
shielding (Majumdar and Burns, 1981; Thomson and Sinclair. 1982). due to dislocation
arrays can be temporary. The aforementioned explicit dynamic effect is manifested here as
a jump in KJ at the instant of fracture initiation.

9. CALCULATIONS FOR A STRESS-CONSISTENT ARRAY

The array considered above is uniform in the sense that only right-handed screw
dislocations arc present. [f a symmetric array centered on the crack edge were, in fact, to

sid = 00 LO

s/d<IO ---­
s/d=IO ---­

SO -----
100 ---------

C=0.2

x

Fig. 5. Dislocation force for individual dislocations in a uniform array.
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OOr----r-........-....-__.-_

- 40 l....---'-_...L.._.J....--J_...J
0.0 10 2.0 3.0 4.0 5.0

sid
Fig. 6. Stress intensity faclor response for a uniform array.

be generated by an antisymmetric antiplane stress field. then it is likely that the Burgers
vectors for dislocations on opposite sides of the crack edge. Le. opposite sides of I0 I = rc/2.
would be in opposite directions. By altering the sign of b appropriately. eqns (37}-(40) and
(44) can be used to describe the genemlized forccs for such an array. Thus. in Figs 7 and
8. we present analogies to Figs 5 and 6 for a symmctric array of six dislocation p'lirs with
polar angles cp = tkrc/8 (k = 1•...• 7;k ~ 4). where the dislocation pairs loc'lted behind
the cmck edge (I tit I > rc/2) are lert h'lnded.

In Fig. 7. disloc'ltions ncarer the crack pl'lne are seen to be repulsed from it prior to
the crack edge motion sign'll arrival. but attracted to it further away. The signal arrival
then causes pronounced changes in both the magnitude and din:ction of the total resultant
dislocation force: disloc'ltions lying in front of the crack appear to be attracted to the
moving crack edge. while those behind are eventually attracted to the crack surface.

Comparison of Figs 6 and 8 indicates that the general behavior of K), and thus, J, is
largely the same for both arrays when s/d> I. For s/d > I, however, J actually increases
slightly with both sand t.

10. BRIEF DISCUSSION

This article examined the generalized forces due only to the interaction between a
growing crack and a stationary array of screw dislocations. The force expressions were

y (:=0.2

sid =0.0 1.0

s/d<I.O ---­
s/d=1.0---­

5.0 ----­
100 --------

., \5.0

Fig. 7. Dislocation force for individual dilllocations in a stress-consistent array.
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Fig. ll. Stress intensity factor response for a stress-consistent arr;ly.

based on exact solutions to the transient problem for a single screw dislocation. Study of
the dislocation force components in this problem indicated that in the absence of an applied
stress. an isolated screw dislocation is ultimately attracted to the er~ld surface. yet has
no tendency to follow the moving crack edge. For two types of symmetrically-arranged
dislocation arrays. however. individual members of the array call be attracted to the crad
edge or repulsed from the crack surl~tce. In both cases. the explicit dependence of the force
components on the non-dimensionalized crack edge speed indicated a dyn~lInic ellcct in the
inter~\I;tion process. Moreover. if the crack edge instantaneously achieves a finite speed.
then the signals of this event cause instantaneous. and sometimes pronoum:ed. changes in
the dislocation force components.

An auxiliary of this signal arrival behavior of some interest in its own right was that
the glide plane force on a screw dislocation in an amty at rest ncar a stationary crack is
independent of any other members of the array. This is no longer true when the crack edge
motion signal arrives.

These n.:sults imply that the presumption of dislocation array migration toward a
moving crack edge employed in the approximate dislocation-crack interaction analysis by
Brock and Jolles (1987) has validity. More generally. the results indicate that. if alternate
glide planes arc available. and the dislocation force components can overcome the lattice
friction (Bilby et al.. 1963; Shaw. 1984). then crack growth can indeed cause dislocation
motion by jogging.

The study of the dynamic stress intensity factor which was needed for calculation of
the crack driving force J showed that there was also an explicit dynamic effect. and that J
is inversely related to both crack speed and time after crack motion initiation occurs. In
regard to the factor itself. the study showed that crack edge shielding by the dislocation
arrays considered can be temporary.

As mentioned at the outset. this article was an important step beyond the work of
Brock and Jolles (1987). It was. obviously. based on presumed dislocation·crack kinematics
and a rather idealized situation. because the equilibrium stress state generated by the
stationary dislocations was assumed to be. without knowledge ofan applied stress. sull1cient
to initiate fracture. and no fracture/dislocation motion criteria were actually invoked.
Moreover. only quantities associated with crack-dislocation interaction. not with applied
stress-crack interaction. were examined. Nevertheless. the observations made here will
enable a study now ongoing to consider more realistic situations. in which the kinematics
is viewed as the result of an applied stress and the material properties.
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